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Minimum s-t Cut of a Planar Undirected Network in 0(n log (n)) Time 

Summary. Let N be a planar undirected network with distinguished 

vertices s, t, a total of n vertices, and each edge labeled with a positive 

real (the edge's cost) from a set L. This paper presents an algorithm for 

computing a minimum (cost) s-t cut of N. 

2 
For general L, this algorithm runs in time 0(n log (n))  time on a 

(uniform cost criteria) RAM.  For the case L contains only integers < n   , 

the algorithm runs in time 0(n log(n)loglog(n)).  Our algorithm also constructs 

a minimum s-t cut of a planar graph (i.e., for the case L • {l}  in time 

0(n log(n)). 

The fastest previous algorithm for computing a minimum s-t cut of a 

planar undirected network [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] 

2 
has time 0(n log(n)) and the best previous time bound for minimum s-t cut 

2 
of a planar graph (Cheston, Probert, and Saxton, 1977] was 0(n ). 
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1.  Introduction 

The importance of computing a minimum s-t cut of a network is illustrated 

by Ford and Fulkerson's [1962] Theorem which states that the value of the 

minimum s-t flow of a network is precisely the minimum s-t cut. 

The best known algorithms [Galil, Naamad 19791,[shiloach, 1978] for computing 

the max flow or minimum s-t cut of a sparse directed or undirected network 

2   2 
(with n vertices and 0(n)  edges) has time 0(n log (n)). 

This paper is concerned with a planar undirected network    N, which occurs 

in many practical applications. 

Ford and Fulkerson [1956] have an elegant minimum s-t cut algorithm for 

the case N is (s,t)-planar  (both s and t are on the same face) which 

efficiently implemented by [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] 

has time 0(n log(n)). 

Moreover, 0(n)  executions of their algorithm suffices to compute the 

2 
minimum s-t cut of an arbitrary planar network  in total time 0(n log(n)). 

2 
Also, [Cheston, Probert, Saxton, 1977] have an    0(n )  algorithm for the 

minimum s-t cut of a planar graph. 

A key element of the [Ford and Fulkerson, 1956] algorithm for  (s,t)- 

planar networks was an efficient reduction to finding a minimum cost path 

between two vertices in a sparse network.  [Dijkstra, 1959] gives an algorithm 

for a generalization of this problem (to find a minimum cost path from a fixed 

"source" vertex s to each other vertex).  Dijkstra's algorithm may be 

implemented (see [Aho, Hopcroft and ullman, 1974]) in time 0(Q (n))  for 
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a sparse network with n vertices, L is the set of non-negative reals 

labeling the edges, and Q (n)  is an upper bound on the time to maintain a 
Ii 

queue of 0(n)  elements with costs from L, and with 0(n)  insertions and 

deletions. For the general case,  Q (n) = 0(n log(n))  (see [Hopcroft and 

Ullman, 1974]). For the special case L is a set of positive integers < n 

[Boas, Kaas and Zijlstra, 1977], Q (n) » 0(n loglog(n)).  It is obvious that 
L 

if L - {1}, QT(n) = 0(n). 
jj 

Our algorithm for computing the minimum s-t cut of a planar undirected 

network has time 0(Q (n)log(n)). This algorithm also utilizes an efficient 
L 

reduction to minimum cost path problems.  Our fundamental innovation is a 

divide and conquer approach for cuts on the plane. 

0(1) 

The paper is organized as follows: 

The next section gives preliminary definitions of graphs, networks, min 

cuts, and duals of planar networks.  Section 3 gives the Ford-Fulkerson 

Algorithm for (s,t) -planar graphs. 

Section 4 gives an efficient algorithm for minimum cut graphs containing 

a given face.  Our divide and conquer approach is described and proved in 

Section 5.  Section 6 presents our algorithm for minimum s-t cuts of planar 

networks. 

Finally, Section 7 concludes the paper. 

4 *    '   • •- 
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2.  Preliminary Definitions 

2.1 Graphs 

Let a graph    G • (V,E) consist of a vertex set    V and a collection of 

edges    E. Each edge e£E connects two vertices u, v€v (edge e is a 

loop  if it connects identical vertices). We let e • {u,v}  denote edge e 

connects u and v.  Edges e, e' are multiple   if they have the same con- 

nections. 

Let a path  be a sequence of edges p = e , ...,e  such that e. = {v. 1,v.} 

for i = 1,—,k  (we say p traverses  vertices v ,...,v ).  Let p be a 

cycle  if v = v  (cycles containing the same edges are considered identical). 

A path p'  is a subpath  of p if p*  is a subsequence of p. 

Let G be a standard graph if G has no multiple edges nor loops.  Gen- 

erally we let n be the number of vertices of graph G. G is sparse  if the 

number of edges is 0(n).  If G is planar, then by Euler's Theorem G is 

sparse and contains at most 6n-12 edges. 

2.2 Networks 

Let an undirected network    N = (G,c)  consists of a graph G = (V,E)  and 

a mapping c from E to the positive reals. For each edge e£v, c(e)  is 

the cost of    e. For any edge set E'CE, let c(E') = Z^,c{e).  Let the 

cost  of path p = e ,...,e  be c(p) = l, ,c(«.).  Let a path p from vertex 

u to vertex v be minimum  if c(p) <c(p")  for all paths P1 from u to v. 

Let N = (G,c,s,t)  be a standard netuork  if  (G,c)  is an undirected 

network, with G = (V,E)  a standard graph, and s, t are distinguished 

vertices of V (the source, sink  respectively). 



2.3 Min Cuts and Flows in Networks 

Let N = (G,c,s,t)  be a standard network with G • (V,E). 

An edge set XcE is a s-t out  if  (V,E -X)  has no paths from s to 

t. Let s-t cut X be minimum  if c(x) 5c(X*)  for each s-t cut X. 

A function f mapping E to the nonnegative reals is a flow  if 

(i)  Ve€E, f(e, <c(e). 

(ii) Vv£v-{s,t}, ID(f,v) = OUT(f,v) 

where 

IN(f ,v) = Y, f(ej 
e€E 
v€e 

OUT(f,v) =  >  f (e) 

efcE 
v€e 

The value  of the flow f is 

OUT(f,s) - IN(f,t) 

The following motivates our work on minimum s-t cuts: 

Theorem 1.  [Ford and Fulkerson, 1962].  The maximum value of any flow is 

the cost of a minimum s-t cut. 

2.4 Planar Networks and Duals 

Let G = (V,E) be a planar standard graph, with a fixed embedding on 

the plane. Each connected region of G is a face and has a corresponding 

cycle of edges which it borders.  For each edge e€ E, let D(e)  be the 
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corresponding dual edge  connecting the two faces bordering e. 

Let D(G) • (^D(E)) be the dual graph  of G, with vertex set JF = the 

faces of G, and with edge set D(E) = U c_D(e). ec£ 

Note that the dual graph is not necessarily standard (i.e., it may con- 

tain multiple edges and loops), but is planar. 

Let a cycle q of D(G)  be a cut-cycle  if the region bounded by q 

contains exactly one of s or t. 

Proposition 1.  D induces an isomorphism between the s-t cuts of G 

and the cut-cycles of D(G). 

Let N = (G,c,s,t)  be a planar  standard network, with G = (V,E)  planar. 

Let the dual network    D(N) = (D(G),D(c))  have edge costs D(c), where 

D(c)(D(e)) = c(e)  for all edges e€E.  (Generally we will use just c in 

place of D(c)  where no confusion with result.)  For each face F€«^ let a 

cut-cyle q in D(N)  be F.-minimum  if q contains F.  and c(q) <c(q') 

for all cut-cyles q'  containing F.. 

Proposition 2. A minimum s-t cut has the same cost as a minimum cost 

cut-cycle of D(G). 
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3.  Ford and Fulkerson's Min s-t Cut Algorithm for (s,t)-Planar Networks 

Let N = (G,c,s,t)  be a planar standard network.  G  (and also N) is 

(s,t)-planar  if there exists a face F  containing both s and t.  Let 

planar network N' be derived from N by adding on edge e connecting s 

and t with cost °°.  Let e  be embedded onto a line segment from s to 

t in F , which separates F  into two new faces F  and F . 

[Ford and Fulkerson, 1956] have an elegant characterization of the 

minimum s-t cut of (s,t)-planar network N. 

Theorem 2.  There is an isomorphism between the s-t cuts of N and the 

paths of D(N')  from F  to F.  and avoiding D(e ) .  Furthermore, this 

isomorphism preserves edge costs.  Therefore, the minimum s-t cuts of N 

correspond to the minimum cost paths in D(N')  from F  to F   (which 

avoid D(e-)). 

Corollary 2.  A minimum cost cut of (s,t)-planar N with n vertices 

may be computed in time 0(Q (n)), where L = range(c). 

Note that this implies the 0(n log(n))  time minimum s-t cut algorithm 

of [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] for (s,t)-planar 

undirected networks, and the 0(n)  time minimum s-t cut algorithm of 

[Cheston, Probert, and Saxton, 1977] for (s,t)-planar graphs. 
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4.  An 0(n log(n)) Algorithm for F-minimum Cut Cycles 

Let N = (G,c,s,t)  be a planar standard network, with G = (V,E)  and 

L = range(c).  Our algorithm for minimum s-t cuts will require efficient 

construction of F-minimum cut cycles for certain given faces F. 

Let &    be the set of faces bordering s and let dF    be the faces 
s t 

bordering t.  Let a u(s,t) path  be a minimum cost path in D(N)  from a face 

of &    to a face of JT. 
s t 

Proposition 3.  Let u be a u(s,t) path traversing faces F ,...,F . 

Let q.  be a F.-minimum cut-cycle of D(N)  for i = l,...,d.  Then D  (q^ ) 
11 ^0 

is a minimum s-t cut of N, where c(q• ) = min{c(q.)|i =1,...,d}. 
0 * 

(Note:  It is easy to compute a  u(s,t) path in time 0(Q (n)).  Let 1,1,1 -L 

M be the planar network derived from D(N)  by adding new vertices v , v 

and an edge connecting v  to each face in &     and an edge connecting each 

face in &     to v .  Let the cost of each of these edges be 1.   Let 

p be a minimum cost path in M from v  to v .  Then p, less its first 

and last edges, is a u(s,t) path.) 

Let u be a u(s,t) path traversing faces F ,...,F . 

By viewing \i     as a horizontal line segment with s on the left and t 

on the right, each edge connected to a face F.  may be considered to be 

connected to F.  from the below  or above   (or both) . 
l 

Let u* be a copy of u traversing new vertices Jt-,...,X.. Let D' be 

the network derived from D(N)  by reconnecting to x.  each edge entering F. 

from above. 

If p is a path of D', then a corresponding path p in D(N)  is con- 

structed by replacing each edge and face appearing in u'  with the corresponding 

edge or face of y.  Clearly, c(p) = c(p). 

i  
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Theorem 3. If p is a minimum cost path connecting F. and x.  in 

D', then p is a F.-minimum cut cycle of D(N). 

Proof. Clearly, p is a cut-cycle of D(N). Suppose p is not 

F.-minimum.  Let q be a F.-minimum cut-cycle of D(N), with c(q) <c(p). 

Then there must be a subpath q. of q connecting faces F., Fk  of y 

but otherwise disjoint from U and such that the edges of q1  together with 

y form a cut-cycle of D(N)  (else we can show q is not a cut-cycle). 

Let y  be the minimal subpath of U containing faces F., F., and F^ . 

Observe that the edges of q1  together with y..  form a F.-minimum cut- 

cycle, else y is not a y(s,t) path.  Let q'  be derived from q  by 

reconnecting the last edge to x    instead of  F . Let y  be the subpath 

of y1  connecting F.  and F.  and let y, be the subpath of y  connecting 

F.  and F  . Also, let y' be the subpath of y'  in D'  corresponding 

to u  .     Then  the edges of y , q', and y'  form a path from F.  to x.  in 

D' and with cost c(q). But c(q) <c(p) = c(p)  is a contradiction with 

the assumption that p is a minimum cost path from F.  to x,. a 

Corollary 3. There is an 0(Q (n))  time algorithm to compute a F.-mini- 

mum cut cycle for any face F.  of a y(s,t) path in D(N). 

i 
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5.  A Divide and Conquer Approach 

Let y be a y(s,t) path of D(N)  traversing faces F,,...,F. as in 

Section 4. Note that any s-t cut of planar network N must contain an edge 

bounding on a face P.,..., or F . Thus an obvious algorithm for computing 

a minimum s-t cut of N is to construct a F.-minimum cut cycle q.  in D(N) 

for each i = l,...,d. This may be done by d executions of the 0(Q (n)) 
L 

time algorithm of Corollary 3. Then by Proposition 3, D  (q^ )  is a minimum 
x0 

s-t cut where c(q- ) = min{c(q ),... ,c(q,)} .  In the worst case, this requires 
*g la 

0(Q (n)-n)  total time. This section presents a divide and conquer approach 

which requires only log(d)  executions of a F.-minimum cut algorithm. 

Lemma 1. Let F., F. be distinct faces of y, i < j.  Let p be any F.- 

minimum cut-cycle of D(N)  such that the closed region R bounded by p contains 

s.  Then there exists an F.-minimum cut-cycle q contained entirely in R. 

Proof.  Let q be any F.-minimum cut-cycle.  Let q' be the cut-cycle 

derived from q by repeatedly replacing subpaths connecting faces traversed 

by y with the appropriate subpaths of y  (only apply replacements for 

which the resulting q*  is cut-cycle). 

Observe c(q') <c(q)  (else we can show y  is not a y(s,t) path).  Let 

R' be the closed region bounded by q.  Suppose R' £ R.  Then there must 

be a subpath q  of q'  connecting faces F , F  of p such that q  only 

intersects R at F  and F .  Let p  be the subpath of p connecting 

F  and F  in R'. We claim c(p )<c(qj).  Suppose c(p ) >c(q ).  By 

a b 
our construction of q', either q,  avoids F.,F.=F  or F.=F.  In 

* •        Hl 3       3 3 

any case, we may derive a cut-cycle p'  from p by substituting q  for p . 

 -      -*-••  •••••• 
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But this implies c(p') <c(p), contradicting our assumption that p is a 

F.-minimum cut-cycle. 

Now substitute p   for q   in q* . The resulting cut-cycle is no more 

costly than q', since c(p ) £c(q ). 

The lemma follows by repeated application of this process. a 

The above lemma implies a method for dividing the planar standard network 

N, given an s-t cut X. Let N  be the network derived from N by deleting 

all edges of X. N  can be partitioned into two networks N , N , where 

no vertex of N  has a path to t, and no vertex of N  has a path to s. 
S L. 

Also, each edge c£x must have connections to a vertex of N  and a vertex s 

Of  N . 

Let N* be the planar network consisting of N , a new vertex t', and s s 

for each e€x, add a new edge with cost c(e)  connecting t'  to the vertex 

of e contained in N .  Similarly, let N' be the planar network consisting 

of N , a new vertex s', and adding a new edge of cost c(e)  connecting s' 

to the vertex of e contained in N , for each e€X.  (Note that N'  and 
t s 

N'  are not necessarily standard since they may contain multiple edges con- 

necting a given vertex to s or t.)  Let DIVIDE(N,X,s)  and DIVIDE(N,X,t) 

be the planar standard networks derived from N *, N'  respectively by merging 

multiple edges and setting the cost of each resulting edge to be the sum of 

the costs of the multiple edges from which it was derived. 

Let E be the edges of network N. 

Let Y be a set of edges of N  (or IO . s      t 

Let E(Y)  be the set of edges of E derived from Y by substituting 

for any edge e connecting t'  (or s')  the corresponding edges of X 

from which e was derived. 

—   ' 
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The following theorem follows immediately from the above lemma and 

Proposition 3. 

Theorem 4. Let X be an s-t cut of planar standard network N such 

that D(X)  is a F-minimum cut-cycle, for some face P in a U(s,t)  path 

of D(N).  Let X  be a minimum s-t' cut of DIVIDE(N,X,s)  and let X 
• t 

be a minimum s'-t cut of DIVIDE(N,X,s).  Then E(X )  or E(X )  is a mini- 

mum s-t cut of N. 

I». » 

—  
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6.  The Min s-t Cut Algorithm for Planar Networks 

Theorem 4 of the previous Section 4 yields a very simple, but efficient, 

"divide and conquer" algorithm for computing minimum s-t cut of a planar 

standard network. 

We assume the [Ford and Fulkerson, 1956] Algorithm (given in Section 3). 

(i)   (S,t)-PLANAR-MIN-CUT(N) 

which computes a minimum s-t cut of (s,t)-planar standard network N in time 

0(Q(n)). We also assume algorithms (given in Section 4). 
L 

(Ü)  U(s,t) PATH(D(N)) 

computes a u(s,t) path of D(N)  in time 0(Q (n)). 
L 

(iii) F-MIN-CUT-CYCLE(N,F.,y) 

computes a F.-minimum cycle of N  (for F.  in y(s,t) path y), in time 

0(QT.(n)). 

Recursive Algorithm PLANAR-MIN-CUT(N,u) 

input planar standard network N = (G,c,s,t), where G = (V,E), and 

u(s,t) path y. 

begin 

Let F,,...,F, be the faces traversed by y. 
1     d 

if d = 1 then return (s,t)-PLANAR-MIN-CUT(N); 

else begin 

X «-D-1 (F-MIN-CUT-CYCLE (N,F , . .. . ,U)) ; 
La/-4 J 

N ^DIVIDE(N,X,s); 

N «-DIVIDE (N,X,t),• 

Let y0  (y.)  be the subpath of \l    contained in N 

(respectively, N ); 

• '   - •• 
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X • PLANAR-MIN-CUT (N , y ) 

X. •*-PLANAR-MIN-CUT (N,y.) 

if  c(E(XQ)) <c(E(X1)) 

then return E(XQ) 

else return E(X..); 

end; 

end; 

For any   uj€{o,l}   ,  r >0,  inductively let    N    =   (G  ,c  ,s  ,t )    be the 
ÜJ    w u U) u 

planar standard network and let y   be the u(s ,t )-path in N , defined 

by recursive calls to PLANAR-MIN-CUT.  Suppose PLANAR-MIN-CUT(N ,y )  is 
u iij 

called.  If y  contains only one face, then let NQ    and N, be empty 

networks, and let y,,,n and u.., be empty paths.  Else let X  be the s -t •"(DU       >~UiL c oj U  U) 

cut of N  computed by the call to D~ (F-MIN-CUT-CYCLE(-:))  and let Nw0, 

Ntdl ^e tne P^anar standard networks constructed by the calls to DIVIDE, and 

let y^o' ^üJl ke the subpaths of y contained in Nj0, Syi.  Then it is 

easy to verify that yu0 is a y (s^t^-path in N^g and y^ is a 

y (s^^t^J-path in N^.  Furthermore, if d is the length of y  (the y(s,t) 

path of N), there can be no more than log(d) = 0(log(n))  recursive calls 

(where n is the number of vertices of N). 

Let n  be the number of vertices of N .  Since N  is planar, the 
ü) Ü) Ü) 

number of edges of N  is  6n -12 by Euler's Theorem. 

Lemma 2. For any r > 0, 

n  = 0(n) 
0) 

we{o,i}r 
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Proof.  Suppose for some fixed r >0, this holds for all r, OSr<r . 

Consider some ü) € (0,1} .  Note that each edge of N Q    and N^,  constructed 

by DIVIDE corresponds to an edge of N .  Consider some fixed edge e of N . 

Note that e appears only at most once in each of NMn and N,, .  If e £X 
(JOO "0)1- 

(Jj 

then e doesn't appear at all in one of U^Q    or N^.  However if e€x 
0) 

then e may appear in both N^Q and N,^. 

But (due to the merging of multiple edges in the definition of DIVIDE), 

for each r >r , e appears in at most one N^Qa  ^or anY a €{0,l} * and 

not at all in N^QQ'  f°r any a' €{0,1} *• - a.  Similarly, e appears in at 

most one N^jo  for some 8 €{o,l} *,  Thus by induction, 

= 0(n) 

U)6{0,l} 

We have shown: 

Theorem 5.  Given a planar standard network N = (G,c,s,t)  with L = 

range(c), and y is a u(s,t) path of N then PLANAR-MIN-CUT(N,u)  computes 

a minimum s-t cut of N in time 0(Q (n)log(n)). 

By known upper bounds on the cost of maintaining queues (as discussed 

in the Introduction), we also have: 

2 
Corollary 5. A minimum s-t cut of N is computed in time 0(n log (n)) 

for general L  (i.e., a set of positive reals), in time 0(n log(n)loglog(n)) 

for the case L is a set of positive integers bounded by a polynomial in n, 

and in time 0(n log(n))  for the case L = (l)  (in this case N is a graph 

with identically weighted edges). 

. 
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Conclusion 

We have presented an algorithm for computing a minimum s-t cut of a 

planar undirected network. Our algorithm runs in an order of magnitude less 

time than previous algorithms for this problem. An additional attractive 

feature of this algorithm is its simplioity,  as compared to certain other 

algorithms for computing minimum s-t cuts for sparse networks.[Galil, Naanad, 

1979] and [Shiloach, 1978] 
\ 

• - J 
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